Manifold Learning for the Semi-Supervised Induction of FrameNet Predicates: An Empirical Investigation
نویسندگان
چکیده
This work focuses on the empirical investigation of distributional models for the automatic acquisition of frame inspired predicate words. While several semantic spaces, both word-based and syntaxbased, are employed, the impact of geometric representation based on dimensionality reduction techniques is investigated. Data statistics are accordingly studied along two orthogonal perspectives: Latent Semantic Analysis exploits global properties while Locality Preserving Projection emphasizes the role of local regularities. This latter is employed by embedding prior FrameNet-derived knowledge in the corresponding non-euclidean transformation. The empirical investigation here reported sheds some light on the role played by these spaces as complex kernels for supervised (i.e. Support Vector Machine) algorithms: their use configures, as a novel way to semi-supervised lexical learning, a highly appealing research direction for knowledge rich scenarios like FrameNet-based semantic parsing.
منابع مشابه
Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference
Semi-supervised learning methods using Generative Adversarial Networks (GANs) have shown promising empirical success recently. Most of these methods use a shared discriminator/classifier which discriminates real examples from fake while also predicting the class label. Motivated by the ability of the GANs generator to capture the data manifold well, we propose to estimate the tangent space to t...
متن کاملOnline Manifold Regularization: A New Learning Setting and Empirical Study
We consider a novel “online semi-supervised learning” setting where (mostly unlabeled) data arrives sequentially in large volume, and it is impractical to store it all before learning. We propose an online manifold regularization algorithm. It differs from standard online learning in that it learns even when the input point is unlabeled. Our algorithm is based on convex programming in kernel sp...
متن کاملSemi-supervised Collaborative Text Classification
Most text categorization methods require text content of documents that is often difficult to obtain. We consider “Collaborative Text Categorization”, where each document is represented by the feedback from a large number of users. Our study focuses on the semisupervised case in which one key challenge is that a significant number of users have not rated any labeled document. To address this pr...
متن کاملSemi-supervised classification learning by discrimination-aware manifold regularization
Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) using both the labeled and unlabeled data. It first constructs a single Laplacian graph over the whole dataset for representing the manifold structure, and then enforces the smoothness constraint over such graph by a Laplacian regularizer in learning. However, the smoothness over such a single La...
متن کاملMulti-view Laplacian Support Vector Machines
We propose a new approach, multi-view Laplacian support vector machines (SVMs), for semi-supervised learning under the multiview scenario. It integrates manifold regularization and multi-view regularization into the usual formulation of SVMs and is a natural extension of SVMs from supervised learning to multi-view semi-supervised learning. The function optimization problem in a reproducing kern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010